A sequential effect algebra $(E,0,1, \oplus, \circ)$ is an effect algebra onwhich a sequential product $\circ$ with certain physics properties is defined,in particular, sequential effect algebra is an important model for studyingquantum measurement theory. In 2005, Gudder asked the following problem: If $a,b\in (E,0,1,\oplus, \circ)$ and $a\bot b$ and $a\circ b\bot a\circ b$, is itthe case that $2(a\circ b)\leq a^2\oplus b^2$ ? In this paper, we construct anexample to answer the problem negatively.
展开▼
机译:序列效应代数$(E,0,1,\ oplus,\ circ)$是定义了具有一定物理性质的序列乘积$ \ circ $的效应代数,特别是,序列效应代数是研究量子的重要模型测量理论。在2005年,Gudder提出了以下问题:如果$ a,b \ in(E,0,1,\ oplus,\ circ)$和$ a \ bot b $和$ a \ circ b \ bot a \ circ b $ ,是$ 2(a \ circ b)\ leq a ^ 2 \ oplus b ^ 2 $吗?在本文中,我们构造了一个否定答案的例子。
展开▼